Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metal carbides, nitrides, or carbonitrides of early transition metals, better known as MXenes, possess notable structural, electrical, and magnetic properties. Analyzing electronic structures by calculating structural stability, band structure, density of states, Bader charge transfer, and work functions utilizing first principle calculations, we revealed that titanium nitride MXenes, namely TiN and TiN, have excess anionic electrons in their lattice voids, making them MXene electrides. Bulk TiN has competing antiferromagnetic (AFM) and ferromagnetic(FM) configurations with slightly more stable AFM configuration, while the TiN MXene is nonmagnetic. Although TiN favors AFM configuration with hexagonal crystal systems having point group symmetry, TiN does not support altermagnetism. The monolayer of the TiN MXene is a ferromagnetic electride. These unique properties of having non-nuclear interstitial anionic electrons in the electronic structure of titanium nitride MXene have not yet been reported in the literature. Density functional theory calculations show TiN is neither an electride, MXene, or magnetic.more » « lessFree, publicly-accessible full text available January 13, 2027
-
The careful modulation of RuO2content in TiO2nanostructures plays a crucial role in optimizing photochemical properties resulting in water splitting under visible light, making them promising candidates for solar-driven hydrogen generation.more » « lessFree, publicly-accessible full text available May 13, 2026
-
Abstract This research aims to develop chitosan-zein protein films supplemented withBergenia ciliata(Bc) extract, a traditionally important medical herb of Himalayan origin. The film’s physicochemical, mechanical, antioxidant, and antimicrobial properties were systematically explored. The opacity of chitosan film increased from 2.42 ± 0.97 to 10.32 ± 1.44 upon introducing zein (Z) protein in chitosan (Cs) in a 1:2 ratio (w/w); conferring enhanced UV-blocking attributes. IncorporatingB. ciliataextracts in the chitosan-zein film (Cs-Z-Bc) under optimized conditions further increased the opacity to 16.27 ± 1.03 without compromising the tensile strength. The α-diphenyl-β-picrylhydrazyl scavenging activity of the Cs-Z-Bc film was found to be 97.07 ± 1.09%. Additionally, these optimized films displayed significant antimicrobial efficacy, with zones of inhibition of 11.4 mm measured for gram-positive strains likeC. subtilisandS. aureusand 11.2 mm and 11.1 mm forE. coliandK. pneumoniae(gram-negative) bacterial strains. The film also showed excellent biodegradable properties. The shelf life study of Himalayan cheese was significantly increased when wrapped with the film. These findings suggested thatB. ciliataextract-fortified chitosan-zein films can be an excellent food packaging material.more » « lessFree, publicly-accessible full text available August 12, 2026
-
Marszalek, R (Ed.)Hydrothermal and photoreduction/deposition methods were used to fabricate Ag nanoparticles (NPs) decorated CoMoO4rods. Improvement of charge transfer and transportation of ions by making heterostructure was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements. Linear sweep voltammetry results revealed a fivefold enhancement of current density by fabricating heterostructure. The lowest Tafel slope (112 mV/dec) for heterostructure compared with CoMoO4(273 mV/dec) suggested the improvement of electrocatalytic performance. The electrochemical CO2reduction reaction was performed on an H-type cell. The CoMoO4electrocatalyst possessed the Faraday efficiencies (FEs) of CO and CH4up to 56.80% and 19.80%, respectively at − 1.3 V versus RHE. In addition, Ag NPs decorated CoMoO4electrocatalyst showed FEs for CO, CH4, and C2H6were 35.30%, 11.40%, and 44.20%, respectively, at the same potential. It is found that CO2reduction products shifted from CO/CH4to C2H6when the Ag NPs deposited on the CoMoO4electrocatalyst. In addition, it demonstrated excellent electrocatalytic stability after a prolonged 25 h amperometric test at − 1.3 V versus RHE. It can be attributed to a synergistic effect between the Ag NPs and CoMoO4rods. This study highlights the cooperation between Ag NPs on CoMoO4components and provides new insight into the design of heterostructure as an efficient, stable catalyst towards electrocatalytic reduction of CO2to CO, CH4, and C2H6products.more » « less
-
We report the intercalation of polyacrylonitrile nanoparticles in Ti3C2Tx MXene layers through simple sonication. The use of polyacrylonitrile, which was synthesized via radical polymerization, offered dual benefits: (1) It increased the interlayer spacing of MXene, thereby exposing more surface area and enhancing ion transport channels during charge and discharge cycles, and (2) Integrating MXene with polyacrylonitrile enables the creation of a composite with conductive properties, following percolation principle. X-ray diffraction analysis showed an increase in the c-lattice parameter, indicative of the interlayer spacing, from 22.31 Å for the pristine MXene to 37.73 Å for the MXene−polyacrylonitrile composite. The intercalated polyacrylonitrile nanoparticles facilitated the delamination by weakening the interlayer interactions, especially during sonication. Electrochemical assessments revealed significant improvement in the properties of the MXene−polyacrylonitrile composite compared to the pristine MXene. The assembled asymmetric device achieved a good specific capacitance of 32.1 F/g, an energy density of 11.42 W h/kg, and 82.2% capacitance retention after 10,000 cycles, highlighting the practical potential of the MXene−polyacrylonitrile composite.more » « less
-
Abstract An amphiphilic block copolymer, poly (styrene-2-polyvinyl pyridine-ethylene oxide), was used as a structure-directing and stabilizing agent to synthesize TiO2/RuO2nanocomposite. The strong interaction of polymers with metal precursors led to formation of a porous heterointerface of TiO2/RuO2. It acted as a bridge for electron transport, which can accelerate the water splitting reaction. Scanning electron microscopy, energy-dispersiveX-ray spectroscopy, transmission electron microscopy, andX-ray diffraction analysis of TiO2/RuO2samples revealed successful fabrication of TiO2/RuO2nanocomposites. The TiO2/RuO2nanocomposites were used to measure electrochemical water splitting in three-electrode systems in 0.1-M KOH. Electrochemical activities unveil that TiO2/RuO2-150 nanocomposites displayed superior oxygen evolution reaction activity, having a low overpotential of 260 mV with a Tafel slope of 80 mVdec−1. Graphical abstractmore » « less
-
Abstract Hydrogen gas is a prominent focus in pursuing renewable and clean alternative energy sources. The quest for maximizing hydrogen production yield involves the exploration of an ideal photocatalyst and the development of a simple, cost‐effective technique for its generation. Iron titanate has garnered attention in this context due to its photocatalytic properties, affordability, and non‐toxic nature. Over the years, different synthesis routes, different morphologies, and some modifications of iron titanate have been carried out to improve its photocatalytic performance by enhancing light absorption in the visible region, boosting charge carrier transfer, and decreasing recombination of electrons and holes. The use of iron titanate photocatalyst for hydrogen evolution reaction has seen an upward trend in recent times, and based on available findings, more can be done to improve the performance. This review paper provides a comprehensive overview of the fundamental principles of photocatalysis for hydrogen generation, encompassing the synthesis, morphology, and application of iron titanate‐based photocatalysts. The discussion delves into the limitations of current methodologies and present and future perspectives for advancing iron titanate photocatalysts. By addressing these limitations and contemplating future directions, the aim is to enhance the properties of materials fabricated for photocatalytic water splitting.more » « less
An official website of the United States government
